Detection and Prediction of Rare Events in Transaction Databases
نویسندگان
چکیده
Rare events analysis is an area that includes methods for the detection and prediction of events, e.g. a network intrusion or an engine failure, that occur infrequently and have some impact to the system. There are various methods from the areas of statistics and data mining for that purpose. In this article we propose PREVENT, an algorithm which uses inter-transactional patterns for the prediction of rare events in transaction databases. PREVENT is a general purpose inter-transaction association rules mining algorithm that optimally fits the demands of rare event prediction. It requires only 1 scan on the original database and 2 over the transformed, which is considerably smaller and it is complete as it does not miss any patterns. We provide the mathematical formulation of the problem and experimental results that show PREVENT’s efficiency in terms of run time and effectiveness in terms of sensitivity and specificity.
منابع مشابه
Inter-Transaction Association Rules Mining for Rare Events Prediction
Rare events prediction is a very interesting and critical issue that has been approached within various contexts by research areas, such as statistics and machine learning. Data mining has provided a set of tools to treat this problem when the size as well as the inherent features of the data, such as noise, randomness and special data types, become an issue for the traditional methods. Transac...
متن کاملA hybrid approach for database intrusion detection at transaction and inter-transaction levels
Nowadays, information plays an important role in organizations. Sensitive information is often stored in databases. Traditional mechanisms such as encryption, access control, and authentication cannot provide a high level of confidence. Therefore, the existence of Intrusion Detection Systems in databases is necessary. In this paper, we propose an intrusion detection system for detecting attacks...
متن کاملPREVENT: An Algorithm for Mining Inter- transactional Patterns for the Prediction of Rare Events
In this paper we propose a data mining technique for the efficient prediction of rare events, such as heat waves, network intrusions and engine failures, using inter transactional patterns. Data mining is a research area that attempts to assist the decision makers with a set of tools to treat a wide range of real world problems that the traditional statistical and mathematical approaches are no...
متن کاملC-reactive protein and other markers of inflammation in hemodialysis patients
Background: Hemodialysis patients are at greater risk of cardiovascular disease. Higher than expected cardiovascular morbidity and mortality in this population has been attributed to dislipidemia as well as inflammation. The causes of inflammation in hemodialysis patients are multifactorial. Several markers were used for the detection of inflammatory reaction in patients with chronic renal dise...
متن کاملDetecting frauds using customer behavior trend analysis and known scenarios
In this paper a fraud detection method is proposed which user behaviors are modeled using two main components namely the un-normal trend analysis component and scenario based component. The extent of deviation of a transaction from his/her normal behavior is estimated using fuzzy membership functions. The results of applying all membership functions on a transaction will then be infused and a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 16 شماره
صفحات -
تاریخ انتشار 2007